函数的值域
函数y=sinx+sin2x-cosx(0≤x≤π)的值域是 请详细解答,谢谢
令t=sinx-cosx =√2[sinxcos(pi/4-cosxsin(pi/4)] =√2sin(x-pi/4) 0=-pi/4=-√2/2=-1=sin2x=1-t^2 所以y=t+1-t^2=-t^2+t+1=-(t-1/2)^2+5/4 -1=-3/2=0=-9/4=-1=<-(t-1/2)^2+5/4=<5/4 所以函数的值域是[-1,5/4]
设sinx-cosx=t=√2sin(x-π/4) 0≤x≤π t∈[-1,√2] t^2=1-sin2x sin2x=1-t^2 y=t+1-t^2 =-(t-0.5)^2+1.25 当t=0.5∈[-1,2]时,x=3π/4,ymax=1.25 t=-1或2时,x=0,ymin=-1 值域:y∈[-1,1.25]
答:解: 分母≠0 设t=sinx+cosx≠-1 sin2x=t²-1 f(t)=(t²-1)/(1+t)=t-1≠-2 又sinx+cosx...详情>>
答:详情>>