爱问知识人 爱问教育 医院库

宇宙是否有边界

首页

宇宙是否有边界


        

提交回答
好评回答
  • 2006-05-02 15:58:15
      参考文献资料: 天狼星天文网 > 宇宙探索 > 宇宙概貌  
     
     
     
    宇宙是否有限?[图文] 
    来源:《宇宙指南》  类别:宇宙概貌  日期:2003。11。30 15:09  今日/总浏览:3/7235 
      我们的先辈们曾认为宇宙是范围并不很大的球状天体,其中包含着地球以及其他一些形体较小的发光体。
      直至公元1700 年以前,这种理论在天文学界一直占据主导地位。即使在哥白尼发现地球并非宇宙的中心之后,人们仍持同样的观点,只是把“宇宙主宰”这一光环又赠给了太阳而已,而宇宙的基本定义仍未得到根本上的改变。天空仍旧是天上的“球”,里面有许多星星,不过,它包括的主体是太阳,相比之下,地球要逊色得多。
       托勒密的“地心说”体系 哥白尼的“日心说”体系   开普勒的椭圆型轨道的思想废除了星体是“透明的球体”这一谬论,但是却仍然保留了星体是“最外层天体球”这一说法。感谢卡西尼的研究成果,他揭开了太阳系的真实面目,从而证明了太阳系比人们想象的要大得多,而这也只是将人们脑海中宇宙的边界扩大了而已。
         直至哈雷于1718 年发现了恒星也是运动着的球体这一事实后,天文学家们才开始重新认真地认识宇宙。当然,即使所有星体都在移动,宇宙仍有可能是有限的,而所有的星体也都有可能在进行着极其缓慢的移动。但是为什么有的星体的运动速度之快足以被人们观察到,而正是这些星体才能发出比较明亮的光线呢?   关于这一问题,存在这样一种可能,即某个星体由于具有较大的形体,从而能放射出比较明亮的光线,同时由于其体积较大,造成宇宙对它的束缚产生了困难,从而导致了它的移动。
      当然,这只是一种特定的假设,但这种全新的设想对于解开有关谜团是具有创造性意义的——即使其很难在实验室条件下得到验证,或根本无法解决任何问题。   另一方面,有些星球与地球间的距离有可能相对来说比较近,因此看上去就可能显得比较亮一些。再者,如果所有星球移动的速度是相同的,那么距地球越近,往往就显得运动得更快一些。
      这一点与实验室条件下的实验结果是相符的。这一现象是以解释运动越快的星体其亮度越高的原因。那相对比较昏暗的星球其实也处于运动状态,但由于它与地球间距离实在太遥远了,因此即使经过几个世纪的观测也无法察觉到它的位置的变化,但这一变化却有可能在数千年的过程中被观测到,这的确需要人们一代一代不懈的努力。
         如果各个星体与太阳系间的距离各不相同,那么宇宙就应该是无限的,而众多的星球则会像蜂群一样遍布于宇宙的各个角落。直至1718 年,人们才意识到这一点而摒弃了宇宙有限论,从此,一幅广阔无垠而壮丽非常的宇宙画卷终于展现在人们的眼前。 参考文献资料: 无限宇宙思想 “八极之维,经二亿三万二千三百里,……过此而往者,未知或知也。
      ” “宇之表无极,宙之端无穷”。 ——张衡《灵宪》 什么是“宇”?什么是“宙”?战国时期著名政治家商鞅的老师尸佼就下过一个严格的定义:“四方上下曰宇,往古来今曰宙”。
      也就是说,宇指空间,宙指时间。关于宇宙是否有边界的问题,我国自唐宋以后一直争论得很激烈。其中有一些人曾经发表过很有科学思想的精辟见解。但是,这些论述大都只是从哲学上的推理,很少涉及到天文学的本身。张衡作为一位伟大的天文学家,他曾经从天文学的角度论述了宇宙的无限性。
      在这个意义上说,要比仅从哲学概念上所作的推想更为深刻,所以也就更有价值。 在张衡看来,天是有边界的。天究竟是什么形质的东西?在《灵宪》中虽然没有明确的说明,但是可以推想得出来的。元气形成了天,其精气形成了日月众星。因此,除掉星体和元气之外,天上是没有其他东西的。
      张衡所认为的天,只是相对位置固定不变的众恒星所构成的天穹。恒星之间并没有什么固定的联系,更不是都固定在一个固体球壳上,众恒星所包围的天球,就是天的边界。日月五星等巡行的天体,则在各自的轨道上在天球以内运动。天球的外面是没有天体的,究竟还存在什么东西?这是不知道的,所以说“过此而往者,未知或知也”。
      这就是说,宇宙和天地并不是一回事,天地是有大小的,宇宙则无边际,天地只是宇宙的一部分,天地之外的部分,仅仅是看不到而已。所以,张衡又进一步补充说:“宇之表无极,宙之端无穷”。宇宙不但在空间上是无限的,而且在时间上也是无穷的。这是一个十分卓越的见解,是十分光辉的科学辩证思想。
      张衡的宇宙无限思想同马克思主义在宇宙问题上的认识是完全一致的。张衡认为的实际天球是虚空中分布着众多天体,它们可以自由运动,而在同一时代,西方人却没有这种区分。在西方,古希腊哲学家亚里士多德在公元前四世纪就提出:真实的宇宙结构象是一个透明的大水晶球,星辰都镶嵌在这个水晶球上。
      这种认识为公元2世纪时的托勒密所继承。张衡的无限宇宙思想,比水晶球认识要进步得多。 参考文献资料:飞翔物理首页>科普文摘>天文地理>>霍金无边界条件的量子宇宙论   霍金无边界条件的量子宇宙论   霍金在1982年提出了一种既自洽又自足的量子宇宙论。
      在这个理论中,宇宙中的一切在原则上都可以单独地由物理定律预言出来,而宇宙本身是从无中生有而来的。这个理论建立在量子理论的基础之上,涉及到量子引力论等多种知识。   在他的理论中,宇宙的诞生是从一个欧氏空间向洛氏时空的量子转变,这就实现了宇宙的无中生有的思想。
      这个欧氏空间是一个四维球。在四维球转变成洛氏时空的最初阶段,时空是可由德西特度规来近似描述的暴涨阶段。然后膨胀减缓,再接着由大爆炸模型来描写。这个宇宙模型中空间是有限的,但没有边界,被称作封闭的宇宙模型。   从霍金提出这个理论之后,几乎所有的量子宇宙学研究都是围绕着这个模型展开。
      这是因为它的理论框架只对封闭宇宙有效。   如果人们不特意对空间引入人为的拓扑结构,则宇宙空间究竟是有限无界的封闭型,还是无限无界的开放型,取决于当今宇宙中的物质密度产生的引力是否足以使宇宙的现有膨胀减缓,以至于使宇宙停止膨胀,最后再收缩回去。
      这是关系到宇宙是否会重新坍缩或者无限膨胀下去的生死攸关的问题。   可惜迄今的天文观测,包括可见的物质以及由星系动力学推断的不可见物质,其密度总和仍然不及使宇宙停止膨胀的1/10。不管将来进一步的努力是否能观测到更多的物质,无限膨胀下去的开放宇宙的可能性仍然呈现在人们面前。
         可以想象,许多人曾尝试将霍金的封闭宇宙的量子论推广到开放的情形,但始终未能成功。今年2月5日,霍金及图鲁克在他们的新论文“没有假真空的开放暴涨”中才部分实现了这个愿望。他仍然利用四维球的欧氏空间,由于四维球具有最高的对称性,在进行解析开拓时,也可以得到以开放的三维双曲面为空间截面的宇宙。
      这个三维双曲面空间遵循爱因斯坦方程继续演化下去,宇宙就不会重新收缩,这样的演化是一种有始无终的过程。 (摘自 参考文献资料: 从天圆地方看宇宙 [视频] 央视国际 2004年11月25日 14:57    【字:大 中 小】 -------------------------------------------------------------------------------- --------------------------------------------------------------------------------   天文学家在研究银河系结构的时候发现,我们的太阳并不处在银河系的中心,而是处在银河系的边缘上。
      太阳距离银河系中心大约是三万光年,也就说我们地球所在的太阳系距离银河系的中心是三万光年。望远镜发明了以后,人们在观测天体的时候就发现了,天上这些能够看到的天体并不只是一些恒星,还有一些看起来是有扩展,有一个平面结构的对象。我们知道,恒星多数看起来它是没有结构的,就是一个点光源。
      即使是在一些大的望远镜里边,我们看到的绝大多数恒星也是一些点光源,只不过在大望远镜里头它的亮度会增加。那么还有一些天体就不是这样,它是一些带扩展的,就是带有某种形状的光源。其中一个最亮的、最有名的就是在北天就可以看到的仙女座大星系。当初在历史上它曾经被叫“仙女座星云”,它在历史上有过另外一个名称。
      在上个世纪初的时候,在美国曾经因为这个“仙女座星云”到底是银河系内的天体,还是银河系之外的天体,发生过一场非常有名的争论。当时有两个非常资深的天文学家在进行这一场争论。其中一位认为“仙女座星云”是银河系之外的天体,另一位认为“仙女座星云”是银河系内部的天体。
      主张“仙女座星云”是银河系之外天体这位科学家名叫柯惕斯,他就是来自美国的里克天文台。当时他为什么主张“仙女座星云”是银河系之外的天体呢?他研究“仙女座星云”爆发的超新星。他假定所有的超新星在爆发时,它的亮度都是差不多,就是都差不多一样亮。那么他就观测到这个行星的亮度以后,他发现在“仙女座星云”里边,爆发的超新星的亮度非常地暗。
      如果假定所有的超新星爆发的亮度都差不多的话,而在“仙女座星云”里边这个超新星的亮度非常地暗,这说明了什么呢?根据光源反平方定律,就说明它与我们之间的距离是非常遥远的。那么他根据反平方定律还大致算出了“仙女座星云”的距离大概是五十万光年左右,当时他是得到了这样一个结论。
      那么当时(我们)也知道了,我们银河系的直径大概是16万光年。那么很清楚,就是“仙女座星云”它不是我们银河系内部的天体。但是另一位天文学家也举出了另外一些证据,他认为是正确的证据,认为“仙女座星云”是银河系内部的天体。在当时由于双方的证据都不够强有力,当时这场争论就不了了之了,这是在上个世纪初进行的一场争论。
         可是也就在差不多同时,一位年轻的天文学家在威尔逊天文台进行了天文观测,他的观测使这场争论最后有了一个非常明确地结果。这个人就是在上个世纪里边为天文学做出重大贡献的哈勃。哈勃就研究了在“仙女座星云”里边发现了一些“造父变星”,那么“造父变星”是一类非常特别的变星。
      我们知道,天上的行星有一些它的亮度是在不断地发生变化。有一些这些变化是有规律的、有周期性的。那么“造父变星”就是这一类有规律的周期性变星。哈勃在观测了“仙女座星云”里的“造父变星”以后,他就发现在“仙女座星云”里的“造父变星”,它的光变周期是非常长的,但是它的亮度又非常低。
      这样哈勃就意识到,它本来应该很亮,它为什么亮度又非常低呢?那么只能用光源亮度的反平方定律来解释。那么在这个工作的基础上,哈勃就进一步的通过计算,就确定了“仙女座星云”的距离。他当时计算的结果大概是七十万光年的样子。我们刚才说到银河系的直径大约是16万光年,所以“仙女座星云”它就不可能是银河系内部的天体。
      这样刚才我们说到上个世纪初的那一场非常著名的争论,就有了一个结果。   在确认了”仙女座星云”的距离以后,人们开始就考虑这个“仙女座星云”它到底是一个什么样的天体?后来就发现这个“仙女座星云”它实际上是和我们自身所在的银河系是差不多一样的非常巨大的恒星系统。
      这幅图就是银河系的一幅图。我们现在发现的“仙女座星云”也差不多是同样巨大的恒星系统。现在我们知道,“仙女座星云”其中大概有两千亿到三千亿颗恒星,比我们所在的银河系还要大一些。我们所在的银河系大概是一千亿到两千亿颗恒星,这样就使我们人类认识到的宇宙在认识上有一个非常重大的飞跃。
      因为在哈勃工作以前,我们认为银河系就是整个宇宙。那么在哈勃发现了”仙女座星云”不是银河系内的天体,而且后来又进一步发现,其中大概有两千亿到三千亿颗恒星,这样我们人类所认识到的宇宙,就一下子扩大了很多倍。在“仙女座星云”被确认为是河外星系之后,当然从那以后,我们就管它叫“仙女座星系”。
      人类又陆续地发现了许许多多的和它一样的银河系之外的星系。到现在为止,这样所谓的河外星系大概已经估计,应该有几百亿个像我们太阳系所在的银河系这样巨大的恒星系统,我们想我们的宇宙有多大。那么现在观测到的最远的河外星系,它到我们之间的距离大概超过了一百亿光年,也就是说我们所在的宇宙,它的大小最少就是不小于一百亿光年。
      比较准确的说法是一百四十亿光年。到现在为止,我们还没有看到任何宇宙有有边界的迹象。我们知道,我们的望远镜越造越大,我们观测技术越来越发展,那么我们看到的宇宙也就越来越远,我们能看到的距离也就越来越远。但是到现在为止,并没有发现任何宇宙有边界的迹象,我们能不能说宇宙是无限的呢?我想在科学上,我们还不能这么说。
      因为在科学上,一切应该是以观测或者试验的证据为基础,也就是说你在望远镜里看到了,你才能说,我在什么地方看到了一个东西,如果望远镜里还没有看到,那么科学家只能老老实实地承认,那个地方我还没有观测到任何东西,我还没有观测到那么远的地方。所以说宇宙在时间上和空间上是无限的。
      这个说法更多的是一个哲学上的命题,而不是一个科学上的命题。在科学上就是我们(通过)望远镜观测到了,比如说我观测到了一百四十亿光年以外的河外星系,那么科学家就应该说在一百四十亿光年这么大的范围里头,我还没有看到宇宙有任何有边界的迹象,这句话应该是符合科学的。
         那么河外星系的确认应该是人类在认识宇宙的过程中非常重大的进展,可以说是划时代的。我们现在对宇宙的了解就比以前,就是说我们认识到的宇宙比以前是大得多了。有很多天文学家在河外星系被确认前后这一段时间,就开始研究它们的光谱。我们知道,就是从一个天体来的光我们接收到了以后,通过一些分光元件,比如大家可能知道,一些棱镜或者光栅,就能把它分解成一道一道的光谱,这些光谱里实际上携带了很多非常重要的信息。
      我们了解地球以外的天体,更多的是通过分析它们的光谱才得到。那么这幅图就展示了几个河外星系的光谱,这里边就是我们获得的一个非常重要的信息是什么呢?就是关于河外星系光谱的红移的问题,在这幅图里集中的显示了非常重要的发现。最上面那个是一个河外星系,它看起来比较大,比较亮,它离我们的距离比较近。
      那么最下边那个看起来很小、很暗,距离我们非常远的一个河外星系。那么右边这几幅图就是它们的光谱。大家注意,它们的光谱里边有两条黑色的线,就是所谓吸收线,大家看起来那儿像是一个缺口。大家注意这两条吸收线的位置,就是距离我们比较近的河外星系,在它的光谱里边,这两条吸收线比较靠左边,那么在距离我们最远的河外星系,它的光谱里边这两条吸收线就移到了最右边,最右边实际是光谱的红端,就是说距离我们越远的星系,它的谱线就越向红端移动。
      就是说如果一个光源在远离我们运动的话,那么它所发出来光的光谱,其中的谱线就要向红端移动。而且运动速度越快,向红端移动的范围就越大,这就是所谓谱线的红移。   那么这个事实是非常重要的,对于我们现在对宇宙的认识是非常重要的,这说明了什么呢?就是几乎所有的河外星系它们的光谱谱线都发生了红移。
      那么越远的星系,它的红移量就越大,这说明了两个问题,第一,所有的河外星系都在远离我们运动;第二,距离我们越远的河外星系,它远离我们运动的速度就越快,或者说是退行的速度越快。还是哈勃,哈勃继续研究了这个非常重要的事实,当然还有一些许许多多其他的天文学家,也进行了类似的工作。
      后来哈勃他们就发现了这条非常重要的规律。那么哈勃还建立起一个公式,所谓哈勃定律。它就是说越远的河外星系,它的红移量就越大,就说明了它相对于我们退行的速度就越快。   大家注意,这是一个观测事实,是一个试验事实,不是哪个理论学家提出来的。而且谁去观测,都能观测到这个河外星系谱线的红移,那么这一点肯定会导致一个新的科学的诞生,它导致了什么新的科学理论呢?所谓宇宙膨胀这样一个学说,就是我们的宇宙现在正处在一个不停地膨胀之中。
      因为星系是宇宙中物质的一种主要的表现形态,它有宇宙岛之称。那么所有的星系都在远离我们运动,这样就直接导致了宇宙膨胀说的建立。这幅图就展示了在哈勃太空望远镜下我们所发现的众多的河外星系。大家看,其中一些椭圆的物体都是河外星系,在这样一个非常小的天区里边就有如此之多的河外星系。
         爱因斯坦在上个世纪初的时候,先后发表了狭义相对论和广义相对论。大家知道,狭义相对论,它的特点是把时间、空间和物体的质量和这个物体的运动联系起来。在爱因斯坦之前,时间和空间,质量这三个重要的物理量和物体的运动状态是无关的,那么在狭义相对论里边这几个因素,这几个重要的物理参量就联系到一起了,尤其是当物体的运动接近光速的时候。
      那么时间、空间和质量的变化就变得绝对不可以忽略,这是狭义相对论的情况。后来爱因斯坦又发表了广义相对论。那么广义相对论说是的什么呢?是说在一个大质量物体的周围,它的时间和空间都要发生弯曲,这个时间和空间发生弯曲,这件事儿怎么理解呢?我举一个例子,就是说在一个时间和空间发生明显弯曲了的这样一个空间里,连光线都要发生弯曲。
      我们知道,这光线在我们的经验里,永远是沿着直线传播的。大家可能都玩过那个激光手电,打一束激光出去,它的光传播轨迹绝对的是一条直线,这是我们的生活经验告诉我们。那么广义相对论就是说,在一个弯曲的时空里面,这个光线也要发生弯曲。大家想,如果在一个时空里面,连光线都发生弯曲了,那么在这个时空里面就没有什么东西是直的了,这是一个光线的例子。
      爱因斯坦这个广义相对论发表以后呢,这个理论就听起来就很玄,当时据说在世界上没有几个人能读得懂这个广义相对论,就是几乎没有人能接受这种理论。后来爱因斯坦就提出了一种办法,就是提出了一种有可能检验广义相对论是否正确的一个办法,这是一个什么办法呢?就是在日全食的时候有可能做的一个试验。
      那么在日全食的时候,天空黑暗下来以后,我们就有可能观察到太阳后边恒星的位置。根据广义相对论,太阳是一个大质量的天体,那么在它周围,它的时空应该发生弯曲。如果这个恒星的光在经过太阳附近的时候发生了弯曲,那么我们看起来,这个恒星的位置就会发生一点点移动。
      因为我们的经验总是告诉我们,这光从哪儿来,那么光源就在哪个位置上,这是我们人类的经验告诉我们。但是如果这个光线发生弯曲了,我们就有可能对这个光源的位置发生误解。这就如同你把一根筷子插到盛着一碗水中,你会觉得筷子是弯了,那么这时候,因为光线在通过空气和水表面的时候是发生折射了,这也是一种光的弯曲。
      那么这样,我们对物体真实位置的判断就会发生一个错觉。   如果恒星的光在经过太阳附近真的发生弯曲了,那么我们就会看到恒星的位置发生一点点变化。   在上个世纪初的时候,有一支日食观测队就在非洲去观测了一次日全食。他们就真的拍下了当时在日全食发生的时候,太阳附近恒星的位置,就拍下来这个照片。
      后来拿回来进行了仔细地计算以后就发现,这个恒星的位置真的是发生了变化,而且发生变化量跟广义相对论预言的那个变化量是非常一致的,完全在误差范围里面。那么这样就通过这次日全食的观测,广义相对论第一次得到了验证。回到这幅图,我想大家看到,就是在日全食期间,人们真的观察到了恒星位置的移动。
      那么这是一个观测事实。大家想,假如太阳的质量不是现在这样大,它的质量是现在的五倍、十倍,大家想,这个光线弯曲的程度是不是会更甚一些,说白了是更厉害一些,比光线弯曲更厉害一些。那么假定这个质量再大一些,变成太阳的一百倍,光线弯曲程度更甚一些呢,这是非常自然的,从逻辑上是非常正常的。
      那么大家想,总有一天能够到那样一种程度,如果这个物体的质量大到了一定的程度,那么这个光就会落到上面,发生了极端的弯曲,就干脆落到大质量物体上面了,就出不来了,那么这样大质量物体就变成什么了,就变成黑洞了。所以说黑洞的存在是广义相对论的一个推论。
      那么黑洞本身,如果要直接观测它,那是非常困难的,因为光从它那儿出不来。但是我们可以通过间接的办法,一些其他的方法来观察它。比如说天上的X射线源,一个物体在向黑洞里坠落的时候,它是一个加速运动,就是说它是越来越快的,因为根据牛顿第二定律在一个不变力的作用下,它做的是加速运动。
      那么在做加速运动的时候,它就能辐射出来,而且是高能辐射,能够辐射出来。那么这样通过搜寻天上的X射线源的办法,就可以寻找天上的黑洞。但是这也是一种间接的办法。现在我们是说日全食的观测事实已经证明了在大质量物体周围,这个光线的弯曲是真实的,是可以重复的进行观测的。
      那么我们就用逻辑推论证明黑洞是可能存在的。   有了宇宙膨胀学说以后呢,那么新的问题就来了。大家想,既然宇宙现在这些河外星系在不停的远离我们运动,在向四面八方膨胀,假如我们把时间向回推的话,比如说一亿年前,那么这些河外星系的距离是不是比现在要小一些呢,距离我们更近一些呢,这在逻辑上是非常正确的。
      那么如果你继续往回推的话,它们的距离本来应该更近一些。那么不断地往回推,总有可能出现这样一种情况,就是最早它们都在一个点上。那么这样的一种理论,是比利时天文学家勒梅特他最早提出来的。他认为最早的时候,存在着一个所谓“原始原子”,那么这个“原始原子”后来就发生了一次爆炸。
      那么这“原始原子”物质开始向四面八方分散开来。这样勒梅特他就最早提出了“原始原子”和宇宙爆炸的这样一种概念。那么爱因斯坦他在提出广义相对论以后,有一次他亲耳聆听了勒梅特一个科学报告,勒梅特在这个报告里面就把他的“原始原子”这样一个概念提出来了,爱因斯坦听完了以后就当即表示,这是我所听到的最好的一个科学报告。
      从那以后爱因斯坦就是在一定程度上支持大爆炸这个学说。   大爆炸理论站稳了脚跟以后到现在为止,根据最新的研究结果,我们看到了,第一,就是宇宙现在正在膨胀中,而且不仅是膨胀,而且膨胀还在加速,这是最新的观测结果。第二个观测结果,就是关于宇宙中的物质。
      就是为什么科学家对宇宙中的物质非常感兴趣呢?他实际关心的是宇宙中物质的总量。宇宙中物质总量到底有多大?我们知道,现在宇宙在膨胀,那么本来应该根据万有引力,宇宙中的物质应该集中到一点上,由于引力存在嘛,它们距离应该越来越近。正是由于大爆炸以后的惯性,所以向四面八方膨胀的一种力抵消了万有引力,就是膨胀的力占了优势。
      所以宇宙才能处在现在的这样一种膨胀的状态当中。那么会不会有一天膨胀加速它减慢下来,由于万有引力的存在,宇宙又会不会向一个中心去坍塌呢?   最后我想用斯蒂芬。霍金的一句话来结束我们今天这堂课。他说,无论如何,科学的力量在于,凡是未经试验验证的东西,就不能被认为是真实的存在。
      好,谢谢大家!   (来源:cctv-10《百家讲坛》栏目) 。

    雄***

    2006-05-02 15:58:15

其他答案

    2006-05-06 18:11:20
  • 目前,我认为是无边无际

    x***

    2006-05-06 18:11:20

  • 2006-05-05 13:49:16
  • 宇宙应该是有边界的,其边界就是一个引力控制场(这个场如同透明玻璃镀上了反光膜)连光也逃不出这个场,我们所定义的(宇宙大爆炸炸出来)的宇宙,在更大范围里应该很普遍,此级别(爆炸出来)的宇宙应有上千亿个被封闭在一个更大的宇宙空间里,由于时空弯曲除了我们自身,其他的我们一个也看不到。

    长***

    2006-05-05 13:49:16

  • 2006-05-04 09:28:03
  • 很难说的,我们到现在为止还没有观察到宇宙的边际,而且宇宙如果有边际的话,那么宇宙外面又是什么呢?而说宇宙没有边际的话,是不是说物质是无穷的呢?两个相互矛盾的问题摆在面前,不好说。

    双***

    2006-05-04 09:28:03

  • 2006-05-02 21:35:43
  • 从广义上讲,宇宙应该说没有边界,因为四方上下谓之宇——其实是指空间,古往今来谓之宙——其实是指时间。我们应该说时间无限,空间无限,因而我们可以说宇宙无限。但是人类的认识有限,目前科学家能检测到的最远的星系,也就是说它离我们的空间距离是200亿光年。至于200亿光年之外,到底有什么,我也说不清,看来只有上帝知道。

    凡***

    2006-05-02 21:35:43

  • 2006-05-02 20:55:08
  • 现在理论比较支持有限无界的说法,如果宇宙存在边界,那么势必在边界之外有其他东西的存在,那么就违背了现代人的思想理论

    C***

    2006-05-02 20:55:08

  • 2006-05-02 19:00:08
  • 在此,说说我的一点看法(也好象是目前的主流观点):有限而边界,即所谓的封闭的宇宙模型。
    一般人很难接受,举个例子:将一只蚂蚁放在一个“较大”的的气球上,而且假设这只蚂蚁不能看到他头上的空间,即科学上称谓的“二维世界”。此时,对于那只蚂蚁而言,它是不可能走到它所在宇宙(世界)的边界的,于是它会认为它的那个世界会是无边界的(这与我们考虑我们所处的三维世界一样),但你我都知道,这只蚂蚁只不过在一个气球上而已,即有限的。
    换句话说,就是目前的人类的大脑还没有进化到思考清楚这些问题的阶段(至少对于大多数地球人而言是这样)
    如果朋友是位天文爱好者,建议多看点系统的理论知识
    当然欢迎你的交流,我的联系方式:diqiuren868@  
    或kexueshenhua21s@ 

    地***

    2006-05-02 19:00:08

  • 2006-05-02 16:59:13
  • 一定没有边界

    泡***

    2006-05-02 16:59:13

  • 2006-05-02 16:03:41
  •   有限无边
    如果,我们可以想一下,当宇宙还是一个宇宙蛋时。那肯定是有限的,那么就算在大爆炸时的力是无限大的话,也不可能使有限的空间炸出一个无限大的空间来。
    而有限无无边的概念就是宇宙有边界,那是你永远也到达不了边界。宇宙的边缘很可能是一个有着很大的力,足以使任何的物质在靠近它时,都会受到一个斥力,从而使该物体发声‘绝对’运动方向发生改变,但是其实它的相对运动方向并没有改变,因为这个斥力影响着整个宇宙。
      我们可以理解成,有一个人在地球上有一个很大功率的望远镜朝某一方向望去,很可能在某年后会在该镜里看到地球甚至自己,其原因就是当光以径直的方向向前运行时(不考虑其他力),在不断靠近这堵‘墙’时会不断的受到一个斥力,渐渐的的,这个斥力越来越大,使得光以一定的曲率弯曲而继续运行。
      最终,回到原点。(至于是不是球形的就不知道了,圆球体既然那是一种完美的形状或状态的话,我想宇宙有是会去‘考虑’的) 简单的讲,如果在二维的基础上,人的速度只要不超过每秒7。9km时我们始终不会走出地球外。这时,在某种角度上来讲我们会认为这地球是无限大的。
       当然了,宇宙还是在膨胀这是很肯定。 也许,宇宙就是那么大,整个世界(所有的物质世界)也就是那么大。宇宙的外面是‘无’。不过,这有很多人无法接受,毕竟在我们的世界里还没有出现一个有限的东西外面是‘无’的情况。不然,只要是在一个有限的空间内,外面就必定还有一个空间,总觉的太牵强。
      那么,科学家就不必在去争论什么有限的或是无限的了。因为,一个有限的空间外肯定还有空间,那么人人都还在争论什么。 。

    z***

    2006-05-02 16:03:41

  • 2006-05-02 15:56:40
  • 想象一下一个球,球的表面有起点和终点吗?但球有两个面,外面和里面,这是从我们的三维角度来看到的,而如果有只生活在二维面上的人就会看到这个球是无边界的.
    相应的,我们的宇宙在三维空间来看也是无边界的,它的边界在更高一维的四维空间中,也就是一个超四维球体.

    蓝***

    2006-05-02 15:56:40

  • 2006-05-02 15:48:04
  • 应该有边界的,如果宇宙大爆炸学说成立的话,宇宙从一个奇点爆发,然后向周围扩张(据说现在还在扩张)那它总归是有界限的,只是还在膨胀而已。现在俺想象不到的是,宇宙的外面到底是什么。

    f***

    2006-05-02 15:48:04

  • 2006-05-02 15:45:33
  • 当然有了,地球都有边界,类推一下宇宙也有了

    1***

    2006-05-02 15:45:33

类似问题

换一换
  • 天文学 相关知识

  • 教育培训
  • 教育考试

相关推荐

正在加载...
最新问答 推荐信息 热门专题 热点推荐
  • 1-20
  • 21-40
  • 41-60
  • 61-80
  • 81-100
  • 101-120
  • 121-140
  • 141-160
  • 161-180
  • 181-200
  • 1-20
  • 21-40
  • 41-60
  • 61-80
  • 81-100
  • 101-120
  • 121-140
  • 141-160
  • 161-180
  • 181-200
  • 1-20
  • 21-40
  • 41-60
  • 61-80
  • 81-100
  • 101-120
  • 121-140
  • 141-160
  • 161-180
  • 181-200
  • 1-20
  • 21-40
  • 41-60
  • 61-80
  • 81-100
  • 101-120
  • 121-140
  • 141-160
  • 161-180
  • 181-200

热点检索

  • 1-20
  • 21-40
  • 41-60
  • 61-80
  • 81-100
  • 101-120
  • 121-140
  • 141-160
  • 161-180
  • 181-200
返回
顶部
帮助 意见
反馈

确定举报此问题

举报原因(必选):