爱问知识人 爱问教育 医院库

如果框架承受向下的压力

首页

如果框架承受向下的压力

如果框架承受向下的压力,哪些地方最需要斜杆,哪些地方不一定需要斜杠

提交回答

全部答案

    2017-10-17 10:53:08
  • 框架柱长细比较大及受振动荷载等条件时要加斜杆。

    好***

    2017-10-17 10:53:08

  • 2017-10-17 10:53:08
  •   第十二章《力和机械》复习提纲 一、弹力 1、弹性:物体受力发生形变,失去力又恢复到原来的形状的性质叫弹性。 ? 2、塑性:在受力时发生形变,失去力时不能恢复原来形状的性质叫塑性。 3、弹力:物体由于发生弹性形变而受到的力叫弹力,弹力的大小与弹性形变的大小有关 二、重力: ⑴重力的概念:地面附近的物体,由于地球的吸引而受的力叫重力。
      重力的施力物体是:地球。 ⑵重力大小的计算公式G=mg 其中g=9。8N/kg 它表示质量为1kg 的物体所受的重力为9。8N。 ⑶重力的方向:竖直向下 其应用是重垂线、水平仪分别检查墙是否竖直和 面是否水平。 ⑷重力的作用点——重心: 重力在物体上的作用点叫重心。
      质地均匀外形规则物体的重心,在它的几何中心上。如均匀细棒的重心在它的中点,球的重心在球心。方形薄木板的重心在两条对角线的交点 ☆假如失去重力将会出现的现象:(只要求写出两种生活中可能发生的) ① 抛出去的物体不会下落;② 水不会由高处向低处流③ 大气不会产生压强; 三、摩擦力: 1、定义:两个互相接触的物体,当它们要发生或已发生相对运动时,就会在接触面上产生一种阻碍相对运动的力就叫摩擦力。
       2、分类: ? 3、摩擦力的方向:摩擦力的方向与物体相对运动的方向相反,有时起阻力作用,有时起动力作用。 4、静摩擦力大小应通过受力分析,结合二力平衡求得 5、在相同条件(压力、接触面粗糙程度相同)下,滚动摩擦比滑动摩擦小得多。 6、滑动摩擦力: ⑴测量原理:二力平衡条件 ⑵测量方法:把木块放在水平长木板上,用弹簧测力计水平拉木块,使木块匀速运动,读出这时的拉力就等于滑动摩擦力的大小。
       ⑶ 结论:接触面粗糙程度相同时,压力越大滑动摩擦力越大;压力相同时,接触面越粗糙滑动摩擦力越大。该研究采用了控制变量法。由前两结论可概括为:滑动摩擦力的大小与压力大小和接触面的粗糙程度有关。实验还可研究滑动摩擦力的大小与接触面大小、运动速度大小等无关。
       7、应用: ⑴理论上增大摩擦力的方法有:增大压力、接触面变粗糙、变滚动为滑动。 ⑵理论上减小摩擦的方法有:减小压力、使接触面变光滑、变滑动为滚动(滚动轴承)、使接触面彼此分开(加润滑油、气垫、磁悬浮)。 练习:火箭将飞船送入太空,从能量转化的角度来看,是化学能转化为机械能太空飞船在太空中遨游,它 受力(“受力”或“不受力”的作用,判断依据是:飞船的运动不是做匀速直线运动。
      飞船实验室中能使用的仪器是 ?B ? ?(A 密度计、B温度计、C水银气压计、D天平)。 四、杠杆 1、 定义:在力的作用下绕着固定点转动的硬棒叫杠杆。 说明:①杠杆可直可曲,形状任意。 ②有些情况下,可将杠杆实际转一下,来帮助确定支点。如:鱼杆、铁锹。
       2、 五要素——组成杠杆示意图。 ①支点:杠杆绕着转动的点。用字母O 表示。 ②动力:使杠杆转动的力。用字母 F1 表示。 ③阻力:阻碍杠杆转动的力。用字母 F2 表示。 说明 动力、阻力都是杠杆的受力,所以作用点在杠杆上。 ? ? ?动力、阻力的方向不一定相反,但它们使杠杆的转动的方向相反 ④动力臂:从支点到动力作用线的距离。
      用字母l1表示。 ⑤阻力臂:从支点到阻力作用线的距离。用字母l2表示。 画力臂方法:一找支点、二画线、三连距离、四标签 ⑴ 找支点O;⑵ 画力的作用线(虚线);⑶ 画力臂(虚线,过支点垂直力的作用线作垂线);⑷ 标力臂(大括号)。 3、 研究杠杆的平衡条件: ① 杠杆平衡是指:杠杆静止或匀速转动。
       ② 实验前:应调节杠杆两端的螺母,使杠杆在水平位置平衡。这样做的目的是:可以方便的从杠杆上量出力臂。 ③ 结论:杠杆的平衡条件(或杠杆原理)是: 动力×动力臂=阻力×阻力臂。写成公式F1l1=F2l2 也可写成:F1 / F2=l2 / l1 解题指导:分析解决有关杠杆平衡条件问题,必须要画出杠杆示意图;弄清受力与方向和力臂大小;然后根据具体的情况具体分析,确定如何使用平衡条件解决有关问题。
      (如:杠杆转动时施加的动力如何变化,沿什么方向施力最小等。) 解决杠杆平衡时动力最小问题:此类问题中阻力×阻力臂为一定值,要使动力最小,必须使动力臂最大,要使动力臂最大需要做到①在杠杆上找一点,使这点到支点的距离最远;②动力方向应该是过该点且和该连线垂直的方向。
       4、应用: 名称 结 构 特 征 特 点 应用举例 省力 杠杆 动力臂 大于 阻力臂 省力、 费距离 撬棒、铡刀、动滑轮、轮轴、羊角锤、钢丝钳、手推车、花枝剪刀 费力 杠杆 动力臂 小于 阻力臂 费力、 省距离 缝纫机踏板、起重臂 人的前臂、理发剪刀、钓鱼杆 等臂 杠杆 动力臂等于阻力臂 不省力 不费力 天平,定滑轮 说明:应根据实际来选择杠杆,当需要较大的力才能解决问题时,应选择省力杠杆,当为了使用方便,省距离时,应选费力杠杆。
       五、滑轮 1、 定滑轮: ①定义:中间的轴固定不动的滑轮。 ②实质:定滑轮的实质是:等臂杠杆 ③特点:使用定滑轮不能省力但是能改变动力的方向。 ④对理想的定滑轮(不计轮轴间摩擦)F=G 绳子自由端移动距离SF(或速度vF) = 重物移动 的距离SG(或速度vG) 2、 动滑轮: ①定义:和重物一起移动的滑轮。
      (可上下移动, 也可左右移动) ②实质:动滑轮的实质是:动力臂为阻力臂2倍 的省力杠杆。 ③特点:使用动滑轮能省一半的力,但不能改变动力的方向。 ④理想的动滑轮(不计轴间摩擦和动滑轮重力)则:F= 1 ?2G只忽略轮轴间的摩擦则 ?拉力F= ?1 ?2(G物 G动)绳子自由端移动距离SF(或vF)=2倍的重物移动的距离SG(或vG) 3、 滑轮组 ①定义:定滑轮、动滑轮组合成滑轮组。
       ②特点:使用滑轮组既能省力又能改变动力的方向 ③理想的滑轮组(不计轮轴间的摩擦和动滑轮的重力)拉力F= ?1 ? n G 。只忽略轮轴间的摩擦,则拉力F= ?1 ?n (G物 G动) 绳子自由端移动距离SF(或vF)=n倍的重物移动的距离SG(或vG) ④组装滑轮组方法:首先根据公式n=(G物 G动) / F求出绳子的股数。
      然后根据“奇动偶定”的原则。结合题目的具体要求组装滑轮。 ?九年级物理第十三章力和机械知识点 第一节 ?弹力 弹簧测力计 一、弹力 ? ? 物体由于弹性形变而产生的力叫弹力。 1、物体受力发生形变,不受力时又恢复原来的形状的特性叫弹性。(如轻压直尺它发生形变,撤去压力,直尺恢复原状;把橡皮筋拉长,松手后,橡皮筋又恢复原状;压缩弹簧,松手后,弹簧也能恢复原状等等) ? ? 2、物体形变后不能自动恢复原来的形状的特性叫塑性。
      (如橡皮泥用力捏后松手它不能恢复原状;面团用力握后松手它也不能恢复原状) ? ? 3、任何物体只要发生弹性形变,就一定会产生弹力。(如书放于桌面,书和桌子都发生了弹性形变,只不过这种形变量很小,我们不易观察,那么书和桌子之间就存在着相互作用的弹力,我们平常称它们为压力和支持力。
      )我们平时说的压力、支持力、拉力、弹力、张力等等都是由于物体发生弹性形变而产生的,这些力实质上都是弹力。 ? ? 4、弹力产生于直接接触的物体之间,并以物体产生弹性形变为先决条件,不相互接触的物体之间是不会发生弹力作用的。 二、弹簧测力计 1、原理:弹簧受到的拉力越大,它的伸长就越长。
       弹簧测力计只有在弹性形变范围内,它的伸长量才跟它受到的拉力成正比。如果超出弹性形变范围,它就要损坏。 2、使用方法 (1)使用前观察:指针是否指零刻线、量程、分度值。 (2)使用时注意 ①不要超过它的量程。 ②拉动时要避免与外壳摩擦,以免影响测量的准确程度(尽量保证弹簧测力计内弹簧伸长的方向与所测得力在同一条直线上,即可避免上述摩擦)。
       ③读数时,视线要与刻度板表面垂直。 ?第二节 ?重力 ? ? 一、重力的概念 宇宙间任何两个物体之间都存在互相吸引的力,这就是万有引力。大到天体之间,小到灰尘之间,以及地球与它附近的物体之间都存在万有引力。万有引力的大小与物体的质量有关,正是万有引力把地球和其他行星束缚在太阳系中,围绕太阳运转。
       我们把由于地球的吸引而使物体受到的力,叫重力。重力符号为G,单位为N。 1、地球附近的一切物体,无论是固体、液体还是气体,都受到地球的吸引。重力通常叫做重量。 2、由于物体间力的作用是相互的,地球吸引物体的同时,其他物体对地球也有吸引作用,而重力特指地球对其他物体的吸引力。
       3、重力的施力者是地球,受力者是物体。 4、我们身边的物体,质量比太阳、行星、月球小得多,它们之间的万有引力非常小,小到我们不能察觉,比起地球对它的重力来说,就可以忽略不计了。 二、重力的三要素 1、重力的大小 (1)物体所受重力的大小与质量成正比,其关系为 或 ,g=9。
      8N/kg。 (2)重力的大小可用弹簧测力计测出。 注意: (或 )中的g为重力与质量的比例常数,数值为9。8N/kg,意思是在地面附近质量为1kg的物体,受到的重力是9。8N。 在粗略计算时g可取10N/kg。 利用 计算时,要注意式中各量的单位,m的单位是kg,g的单位是N/kg,G的单位是N。
       2、重力的方向 由于重力作用的效果是将物体拉向地面,因此重力的方向总是竖直向下的。 利用重力的方向总是竖直向下的这一特性,可以制成重垂线来检查墙壁是否竖直,也可以在水平仪上悬挂一个重垂线,检查物体表面是否水平。 3、重力的作用点 重力在物体上的作用点叫重心。
       (1)重心的位置 物体的重心位置与物体的形状、材料是否均匀有关。对于材料均匀、形状规则的物体、重心在它的几何中心上;例如均匀细棒的重心在棒的中点,均匀球的重心在它的球心。 (2)重力与质量的区别和联系 重力虽与质量有关,但它与质量是完全不同的两个概念。
      它们的区别是本质上的,绝不可混为乙谈,它们的联系则仅在数值上。下面的表格有较为全面的归纳。 ? 重力 质量 ?符号(名称字母) G m ?定 ? ?义 由于地球的吸引而使物体受到的力 物体含有物质的多少 区 ? ?别 特 ? ?点 ①有大小、方向、作用点三要素 ②同一物体在地球上不同的位置所受重力是不同的(同一物体在高纬度地区和低海拔地区受到的重力较大,在低纬度和高海拔地区受到的重力较小) ③重力的方向总是竖直向下的 ①只有大小 ②同一物体质量部随物体的形状、状态、位置的改变而改变(为一定值) ③没有方向 ?单 ? ?位 N kg ?测量工具 弹簧测力计 天平 联 ? ? 系 ?(g=9。
      8N/kg) ? 第三节 ?摩擦力 一、摩擦力 1、定义:两个互相接触的物体,当它们做相对运动时,在接触面上会产生一种阻碍相对运动的力,这种力叫做摩擦力。 2、产生的条件:(1)两个物体要相互接触;(2)两物体要发生相对运动;(3)两物体之间要有正压力。
       3、作用效果:阻碍物体间的相对运动。 4、方向:与物体相对运动方向相反。 5、施力物体:是相互接触的物体。 6、摩擦的种类:滑动摩擦、滚动摩擦等。 (1)滑动摩擦是指一个物体在另一个物体表面上滑动时产生的摩擦;滚动摩擦是指一个物体在另一个物体表面上滚动时产生的摩擦。
       (2)滚动摩擦是比较复杂的物理现象,不能称作滚动摩擦力。 (3)在压力相同的情况下,滚动摩擦比滑动摩擦小得多。 (4)还有一种摩擦叫静摩擦。两个相互接触哦物体,在外力作用下有相对运动趋势而又保持相对静止时,在接触面间产生的摩擦力叫静摩擦力。
      如推桌子却没推动,这时在桌子与地面间就产生了静摩擦,它阻碍了桌子与地面间的相对运动趋势,其方向总是与物体相对运动趋势的方向相反,由于物体仍保持静止状态,所以静摩擦力总与外力平衡,当外力逐渐增大时(但物体仍没有运动起来),静摩擦力也随之增大。当外力增大到某一程度物体运动起来后,在接触面间产生的就不再是静摩擦力。
       二、滑动摩擦力大小的决定因素 1、跟压力大小有关:在其他条件相同时,压力越大,滑动摩擦力越大。 2、跟接触面的粗糙程度有关:压力一定时,接触面越粗糙,滑动摩擦力越大。 注意:这里采用的研究方法叫控制变量法。这种方法在今后的学习中经常采用。 本实验的测量原理是:二力平衡条件。
      如图所示, 物体在水平拉力F的作用下,在水平面上做匀速直线 运动,拉力F和摩擦力F′是一对平衡力,大小相等, 即F′=F,由弹簧测力计的示数即可知道摩擦力的大小。 三、增大和减小摩擦的方法 1、增大有益摩擦的方法:使接触面粗糙、增大压力。例如在汽车轮胎上刻上花纹,以防打滑;啤酒瓶颈握在手中时,如果要下滑,我们只有握得更紧就不会再滑。
      这两种方法前者就是使接触面粗糙,后者则是增大压力。 2、减小有害摩擦的方法:减小压力,使接触面变得光滑些;用滚动代替滑动;使相互接触的表面分开(如加润滑油和用压缩空气或电磁场使摩擦面脱离接触)。 ?第四节 ?杠杆 一、杠杆 1、定义:一根硬棒,在力的作用下能绕着固定点转动,这根硬棒就叫杠杆。
       (1)“硬棒”不一定是棒,泛指有一定长度的,在外力作用下不变形的物体。 (2)杠杆可以是直的,也可以是任何形状的。 2、杠杆的七要素 (1)支点:杠杆绕着转动的固定点,用字母“O”表示。它可能在棒的某一端,也可能在棒的中间,在杠杆转动时,支点是相对固定的。
       (2)动力:使杠杆转动的力,用“F1”表示。 (3)阻力:阻碍杠杆转动的力,用“F2”表示。 (4)动力作用点:动力在杠杆上的作用点。 (5)阻力作用点:阻力在杠杆上的作用点。 (6)动力臂:从支点到动力作用线的垂直距离,用“l1”表示。 (7)阻力臂:从支点到阻力作用线的垂直距离,用“l2 ”表示。
       注意:无论动力还是阻力,都是作用在杠杆上的力,但这两个力的作用效果正好相反。一般情况下,把人施加给杠杆的力或使杠杆按照人的意愿转动的力叫做动力,而把阻碍杠杆按照需要方向转动的力叫阻力。 力臂是点到线的距离,而不是支点到力的作用点的距离。力的作用线通过支点的,其力臂为零,对杠杆的转动不起作用。
       3、杠杆示意图的画法:(1)根据题意先确定 支点O;(2)确定动力和阻力并用虚线将其作用线 延长;(3)从支点向力的作用线画垂线,并用l1和 l2分别表示动力臂和阻力臂。如图所示,以翘棒为例。 第一步:先确定支点,即杠杆绕着哪一点转动,用字母“O”表示。
      如图甲所示。 第二步:确定动力和阻力。人的愿望是将石头翘起,则人应向下用力,画出此力即为动力用“F1”表示。这个力F1作用效果是使杠杆逆时针转动。而阻力的作用效果恰好与动力作用效果相反,在阻力的作用下杠杆应朝着顺时针方向转动,则阻力是石头施加给杠杆的,方向向下,用“F2”表示如图乙所示。
       第三步:画出动力臂和阻力臂,将力的作用线正向或反向延长,由支点向力的作用线作垂线,并标明相应的“l1”“l2”, “l1”“l2”分别表示动力臂和阻力臂,如图丙所示。 ? ? ? ? ? 二、杠杆的平衡条件 ? ? 1、杠杆的平衡:当杠杆在动力和阻力的作用下静止时,我们就说杠杆平衡了。
       ? ? 2、杠杆的平衡条件实验 ? ? ? ? ? (1)首先调节杠杆两端的螺母,使杠杆在水平位置平衡。如图所示,当杠杆在水平位置平衡时,力臂l1和l2恰好重合,这样就可以由杠杆上的刻度直接读出力臂食物大小了,而图甲杠杆在倾斜位置平衡,读力臂的数值就没有乙方便。
      由此,只有杠杆在水平位置平衡时,我们才能够直接从杠杆上读出动力臂和阻力臂的大小,因此本实验要求杠杆在水平位置平衡。 (2)在实验过程中绝不能再调节螺母。因为实验过程中再调节平衡螺母,就会破坏原有的平衡。 3、杠杆的平衡条件:动力×动力臂=阻力×阻力臂,或F1l1=F2l2。
       杠杆如果在相等时间内能转过相等的角度,即匀速转动时,也叫做杠杆的平衡,这属于“动平衡”。而杠杆静止不动的平衡则属于“静平衡”。 三、杠杆的应用 1、省力杠杆:动力臂l1>阻力臂l2,则平衡时F1<F2,这种杠杆使用时可省力(即用较小的动力就可以克服较大的阻力),但却费了距离(即动力作用点移动的距离大于阻力作用点移动的距离,并且比不使用杠杆,力直接作用在物体上移动的距离大)。
       2、费力杠杆:动力臂l1<阻力臂l2,则平衡时F1>F2,这种杠杆叫做费力杠杆。使用费力杠杆时虽然费了力(动力大于阻力),但却省距离(可使动力作用点比阻力作用点少移动距离)。 3、等臂杠杆:动力臂l1=阻力臂l2,则平衡时F1=F2,这种杠杆叫做等臂杠杆。
      使用这种杠杆既不省力,也不费力,即不省距离也不费距离。 既省力又省距离的杠杆时不存在的。 ?第五节 ?其他简单机械 一、滑轮 1、滑轮定义:周边有槽,中心有一转动的轮子叫滑轮。如右图所示。 因为滑轮可以连续旋转,因此可看作是能够连续旋转的杠杆,仍可 以用杠杆的平衡条件来分析。
       根据使用情况不同,滑轮可分为定滑轮和动滑轮。 2、定滑轮 (1)定义:工作时,中间的轴固定不动的滑轮叫定滑轮。如下左图所示。 (2)实质:是个等臂杠杆。(如下中图所示) 轴心O点固定不动为支点,其动力臂和阻力臂都等于圆的半径r,根据杠杆的平衡条件:,可知,因为重物匀速上升可知,则,不省力。
       ? ? ? ? ? ? ?(3)特点:不省力,但可改变力的方向。 ? ? ? ? ? ? ? ? ? ? ? ? S=h 所谓“改变力的方向”是指我们施加某一方向的力(图中F1方向向下)能得到一个与该力方向不同的力(图中得到使重物G上升的力)。
       (4)动力移动的距离与重物移动的距离相等。(如上右图所示) 对于定滑轮来说,无论朝哪个方向用力,定滑轮都是一个等臂杠杆,所用拉力都等于物体的重力G。(不计绳重和摩擦) 3、动滑轮 (1)定义:工作时,轴随重物一起移动的滑轮叫动滑轮。(如下左图所示) ? ? ? ? ? ? ? ? ?(2)实质:是个动力臂为阻力臂二倍的杠杆。
      (如上中图所示) 图中O可看作是一个能运动的支点,其动力臂l1=2r ,阻力臂l2=r,根据杠杆平衡条件:F1l1=F2l2,即F1?2r=F2?r,得出 ,当重物竖直匀速向上时,F2=G,则 。 (3)特点:省一半力,但不能改变力的方向。 (4)动力移动的距离是重物移动距离的2倍。
      (如上右图所示) 对于动滑轮来说: (1)动滑轮在移动的过程中,支点也在不停地移动; (2)动滑轮省一半力的条件是:动滑轮与重物一起匀速移动;动力F1的方向与并排绳子平行;不计动滑轮重、绳重和摩擦。 二、滑轮组 1、定义:由若干个定滑轮和动滑轮匹配而成。
       2、特点:可以省力,也可以改变力的方向。使用滑轮组时,有几段绳子吊着物体,提起物体所用的力就是物重的几分之一,即 (条件:不计动滑轮、绳重和摩擦)。 3、动力移动的距离s和重物移动的距离h的关系是:使用滑轮组时,滑轮组用n段绳子吊着物体,提起物体所用的力移动的距离就是物体移动距离的n倍,即s=nh。
      如下图所示。(n表示承担物重绳子的段数) ? ? ? ? ? ? ? n=2 ? ? ? ? n=3 ? ? ? ? ? n=3 ? ? ? ? ?n=4 ? ? ? ? ?n=4 ? ? ? ?n=5 ? ? ? ? ? ? ? ? ? ? ? s=2h ? ? ? ? s=3h ? ? ? ? s=3h ? ? ? ?s=4h ? ? ? ? s=4h ? ? ? ?s=5h ? ?A ? ? ? ? ? ?B ? ? ? ? ? C ? ? ? ? ? D ? ? ? ? ? ?E ? ? ? ? ?F 4、滑轮组的组装:(1)。
      根据 的关系,求出动滑轮上绳子的段数n;(2)确定动滑轮的个数;(3)根据施力方向的要求,确定定滑轮个数。确定定滑轮个数的原则是:一个动滑轮应配置一个定滑轮,当动滑轮上为偶数段绳子时,可减少一个定滑轮,但若要求改变力的作用方向时,则应在增加一个定滑轮。
      在确定了动、定滑轮个数后,绳子的连接应遵循“奇拴动、偶拴定”的规则,由内向外缠绕滑轮。 三、轮轴 1、定义:由两个半径不同的轮子固定在同一转轴的 装置叫做轮轴。半径较大的轮叫轮,半径较小的轮叫轴。 2、实质:轮轴可看作是杠杆的变形。如右图所示。
       3、特点:当把动力施加在轮上,阻力施加在轴上, 则动力臂l1=R,阻力臂l2=r,根据杠杆的平衡条件:F1l1=F2l2, 即F1R=F2r,∵R>r,∴F1<F2,即使用轮轴可以省力,也可以改变力的方向,但却费了距离。 四、斜面 (1)如图所示斜面是一种可以省力的简单机械,但却费距离。
       ? ? ? ?(2)如上图所示:当斜面高度h一定时,斜面L越长,越省力(即F越小);当斜面长L相同时,斜面高h越小,越省力(即F越小);当斜面L越长,斜面高h越小时,越省力(即F越小)。

    z***

    2017-10-17 10:53:08

类似问题

换一换
  • 度假旅游 相关知识

  • 吃喝玩乐
  • 娱乐休闲

相关推荐

正在加载...
最新资料 推荐信息 热门专题 热点推荐
  • 1-20
  • 21-40
  • 41-60
  • 61-80
  • 81-100
  • 101-120
  • 121-140
  • 141-160
  • 161-180
  • 181-200
  • 1-20
  • 21-40
  • 41-60
  • 61-80
  • 81-100
  • 101-120
  • 121-140
  • 141-160
  • 161-180
  • 181-200
  • 1-20
  • 21-40
  • 41-60
  • 61-80
  • 81-100
  • 101-120
  • 121-140
  • 141-160
  • 161-180
  • 181-200
  • 1-20
  • 21-40
  • 41-60
  • 61-80
  • 81-100
  • 101-120
  • 121-140
  • 141-160
  • 161-180
  • 181-200

热点检索

  • 1-20
  • 21-40
  • 41-60
  • 61-80
  • 81-100
  • 101-120
  • 121-140
  • 141-160
  • 161-180
  • 181-200
返回
顶部
帮助 意见
反馈

确定举报此问题

举报原因(必选):