爱问 爱问共享资料 爱问分类

一次函数的基本意义

首页

一次函数的基本意义

我想学啊啊

童话诉说你我de结局

查看TA的回答:

提交回答

全部答案

    2018-12-01 01:54:42
  •   【读音】yī cì hán shù   【解释】函数的基本概念:在某一个变化过程中,设有两个变量x和y,如果对于x的每一个确定的值,在y中都有唯一确定的值与其对应,那么我们就说y是x的函数,也就是说x是自变量,y是因变量。表示为y=kx b(k≠0,k、b均为常数),当b=0时称y为x的正比例函数,正比例函数是一次函数中的特殊情况。
      可表示为y=kx(k≠0),常数k叫做比例系数或斜率,b叫做纵截距。   一次函数现在是初二教学本里较难的一章,应用最广泛,知识最丰富的数学课题 编辑本段基本定义  自变量k和X的一次函数y有如下关系:   1。y=kx b (k为任意不为0的常数,b为任意常数)   当x取一个值时,y有且只有一个值与x对应。
      如果有2个及以上个值与x对应时,就不是一次函数。   x为自变量,y为函数值,k为常数,y是x的一次函数。   特别的,当b=0时,y是x的正比例函数。即:y=kx (k为常量,但K≠0)正比例函数图像经过原点。   定义域(函数值):自变量的取值范围,自变量的取值应使函数有意义;要与实际相符合。
         常用的表示方法:解析法、图像法、列表法。 编辑本段相关性质  函数性质:   1。y的变化值与对应的x的变化值成正比例,比值为k。K为常数。   即:y=kx b(k,b为常数,k≠0),   ∵当x增加m,k(x m) b=y km,km/m=k。
         2。当x=0时,b为函数在y轴上的点,坐标为(0,b)。   3当b=0时(即 y=kx),一次函数图像变为正比例函数,正比例函数是特殊的一次函数。   4。在两个一次函数表达式中:   当两一次函数表达式中的k相同,b也相同时,两一次函数图像重合;   当两一次函数表达式中的k相同,b不相同时,两一次函数图像平行;   当两一次函数表达式中的k不相同,b不相同时,两一次函数图像相交;   当两一次函数表达式中的k不相同,b相同时,两一次函数图像交于y轴上的同一点(0,b)。
         若两个变量x,y间的关系式可以表示成y=kx b(k,b为常数,k不等于0)则称y是x的一次函数 图像性质  1.作法与图形:通过如下3个步骤:   (1)列表。   (2)描点;[一般取两个点,根据“两点确定一条直线”的道理,也可叫“两点法”。
         一般的y=kx b(k≠0)的图象过(0,b)和(-b/k,0)两点画直线即可。   正比例函数y=kx(k≠0)的图象是过坐标原点的一条直线,一般取(0,0)和(1,k)两点。   (3)连线,可以作出一次函数的图象——一条直线。因此,作一次函数的图象只需知道2点,并连成直线即可。
      (通常找函数图象与x轴和y轴的交点分别是-k分之b与0,0与b)。   2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx b(k≠0)。(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像都是过原点。
         3.函数不是数,它是指某一变化过程中两个变量之间的关系。   4.k,b与函数图像所在象限:   y=kx时(即b等于0,y与x成正比例):   当k>0时,直线必通过第一、三象限,y随x的增大而增大;   当k0,b>0, 这时此函数的图象经过第一、二、三象限;   当 k>0,b0, 这时此函数的图象经过第一、二、四象限;   当 k0时,直线必通过第一、二象限;   当b0时,直线只通过第一、三象限,不会通过第二、四象限。
      当ky2,则x1与x2的大小关系是( )   A。 x1>x2 B。 x10,且y1>y2。根据一次函数的性质“当k>0时,y随x的增大而增大”,得x1>x2。故选A。   三、判断函数图象的位置   例3。 一次函数y=kx b满足kb>0,且y随x的增大而减小,则此函数的图象不经过( )   A。
       第一象限 B。 第二象限   C。 第三象限 D。 第四象限   解:由kb>0,知k、b同号。因为y随x的增大而减小,所以k30时,Y1>Y2   当X0,则可以列方程组 -2k b=-11   6k b=9   解得k=2。5 b=-6 ,则此时的函数关系式为y=2。
      5x—6   (2)若k0,则y随x的增大而增大;若k<0,则y随x的增大而减小。

    wang丽娟...

    2018-12-01 01:54:42

类似问题

换一换
  • 数学 相关知识

  • 教育培训
  • 教育考试

相关推荐

正在加载...

爱问推荐

  • 1-20
  • 21-40
  • 41-60
  • 61-80
  • 81-100
  • 101-120
  • 121-140
  • 141-160
  • 161-180
  • 181-200

热点检索

  • 1-20
  • 21-40
  • 41-60
  • 61-80
  • 81-100
  • 101-120
  • 121-140
  • 141-160
  • 161-180
  • 181-200
返回
顶部
帮助 意见
反馈
关注
爱问

关注爱问微信公众号,开启知识之旅,随时随地了解最新资讯。

确定举报此问题

举报原因(必选):